Abstract
Multi-layered nanostructured Cu and Cu–CNx composites synthesized by plasma-enhanced chemical vapour deposition were applied in the clamping area of a milling tool to suppress regenerative tool chatter. Scanning electron microscopy analysis showed a multi-layered nanostructure with excellent conformality, i.e. coating is not only uniform on planar surfaces but also around corners of the substrate. Cu:CuCNxnanostructured multilayers with thicknesses of approximately 0.5:1.6 μm were obtained. With a diameter of 20 mm, the milling tool performed slotting processes at an overhang length of 120 mm. Modal analysis showed that a coating, with a thickness of approximately 300 μm, can add sufficient damping without losing stiffness of the tool, to increase the critical stability limit by 50% or 100% depending on cutting direction.
Keywords
Milling; Tool regenerative chatter; Metal matrix composites; Nano-structures; Internal friction damping; Plasma enhanced chemical vapour deposition (PECVD)
Journal of Materials Processing Technology Volume 223, September 2015, Pages 292–298

